On the Tail of Jones Polynomials of Closed Braids with a Full Twist
نویسنده
چکیده
For a closed n–braid L with a full positive twist and with l negative crossings, 0 ≤ l ≤ n, we determine the first n− l+ 1 terms of the Jones polynomial VL(t). We show that VL(t) satisfies a braid index constraint, which is a gap of length at least n − l between the first two nonzero coefficients of (1−t)VL(t). For a closed positive n–braid with a full positive twist, we extend our results to the colored Jones polynomials. For N > n−1, we determine the first n(N − 1) + 1 terms of the normalized N–th colored Jones polynomial.
منابع مشابه
Properties of Closed 3-braids and Other Link Braid Representations
We show that 3-braid links with given (non-zero) Alexander or Jones polynomial are finitely many, and can be effectively determined. We classify among closed 3-braids strongly quasi-positive and fibered ones, and show that 3-braid links have a unique incompressible Seifert surface. We also classify the positive braid words with Morton-Williams-Franks bound 3 and show that closed positive braids...
متن کامل2 8 O ct 2 00 5 Closed 3 - braids are nearly fibred
Ozsváth and Szabó conjectured that knot Floer homology detects fibred links. We will verify this conjecture for closed 3-braids, by classifying fibred closed 3-braids. In particular, given a nontrivial closed 3-braid, either it is fibred, or it differs from a fibred link by a half twist. The proof uses Gabai’s method of disk decomposition. AMS Classification 57M27; 57R58.
متن کامل1 2 O ct 2 00 5 Closed 3 - braids are nearly fibred
Ozsváth and Szabó conjectured that knot Floer homology detects fibred links. We will verify this conjecture for closed 3-braids, by classifying fibred closed 3-braids. In particular, given a nontrivial closed 3-braid, either it is fibred, or it differs from a fibred link by a half twist. The proof uses Gabai’s method of disk decomposition. AMS Classification 57M27; 57R58.
متن کاملO ct 2 00 5 Closed 3 - braids are nearly fibred
Ozsváth and Szabó conjectured that knot Floer homology detects fibred links. We will verify this conjecture for closed 3-braids, by classifying fibred closed 3-braids. In particular, given a nontrivial closed 3-braid, either it is fibred, or it differs from a fibred link by a half twist. The proof uses Gabai’s method of disk decomposition. AMS Classification 57M27; 57R58.
متن کاملar X iv : m at h / 06 06 43 5 v 1 [ m at h . G T ] 1 9 Ju n 20 06 PROPERTIES OF CLOSED 3 - BRAIDS
We show that 3-braid links with given (non-zero) Alexander or Jones polynomial are finitely many, and can be effectively determined. We classify among closed 3-braids strongly quasipositive and fibered ones, and show that 3-braid links have a unique incompressible Seifert surface. We also classify the positive braid words with Morton-Williams-Franks bound 3 and show that closed positive braids ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010